

10945+6-310g4+4 (3-6)³-109

 $\ln x - 2(\ln(x_1z) + \ln(x_2))$ $\ln x - (\ln(x_1z) + \ln(x_2))$ $\ln x - (\ln(x_1z) + \ln(x_2))$ $\ln x - \ln(x_1z) + \ln(x_2)$ $\ln x - 2$ $\ln x - 2$ $\ln x - 2$ $\ln x - 2$

Solving Exponential Equations using the Oneto-One Property (No Calc)

Hint: Rewrite non-exponential side using the same base

Example 1:
$$16 = 4^{x+1}$$

 $4 = 4^{x+1}$
 $3 = x+1$
 $3 = x+1$

Example 2X
$$\left(\frac{1}{2}\right)^{x} = 8$$

$$\left(\frac{1}{2}\right)^{x} = 3$$

$$\left(\frac{1}{2}\right)^{x} = 3$$

Example 3:
$$3^{x+1} = 27$$

$$3^{x+1} = 3$$

$$x + 1 = 3$$

$$x + 1 = 3$$

$$x = 2$$

Example 4:
$$2^{x-2} = \frac{1}{32}$$

 $x-2$ = $\frac{1}{32}$
 $x = \frac{1}{32}$
 $x = \frac{1}{32}$
 $x = \frac{1}{32}$

Solving Logarithmic & Exponential Equations

Calc

Ex5.

$$3^{x} = 30$$

 $09_{10} = 30 = 3.1$
 $109_{10} = 3.1$

Ex6.
$$(\frac{1}{4})^{x} = 60$$
 $\log_{\frac{1}{4}} 60 = X$

Ex.7
$$3(2^{x}) = 42$$

$$109_{2} = 7$$

$$109_{2} = 7$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

$$109_{2} = 1$$

Ex.9
$$5 - 3e^{x} = 2$$

$$-5 - 5$$

$$-3e^{x} = -3$$

Ex.10
$$2(3^{2+-5}) - 4 = 11$$

$$2(3^{2+-5}) = 15$$

$$3^{2+-5} = 7.5$$

$$1.83 = 2 + -5$$

$$3.42$$

Ex.11
$$e^{2x} - 7e^{x} = -12$$

$$e^{2x} - 4e^{x} - 5 = 0$$

$$e^{2x} - 7e^{x} + 12 = 0$$

$$e^{x} - 5)(e^{x} + 1) = 0$$

$$e^{x} - 4(e^{x} - 3) = 0$$

$$e^{x} - 4 = 0$$

$$e^{x} - 3 = 0$$

$$e^{x} - 4 = 0$$

$$e^{x} - 3 = 0$$

$$e^{x} - 4 = 0$$

$$e^{x} - 3 = 0$$

$$e^{x} - 3 = 0$$

$$e^{x} - 4 = 0$$

$$e^{x} - 3 = 0$$

$$e^{x} - 3 = 0$$

$$e^{x} - 4 = 0$$

$$e^{x} - 3 = 0$$

$$e^{x} - 3 = 0$$

$$e^{x} - 4 = 0$$

$$e^{x} - 3 = 0$$

$$e^{x} - 3 = 0$$

$$e^{x} - 4 = 0$$

$$e^{x} - 3 = 0$$

$$e^$$

No Warm-Up Books Warm-Up will be handed out

Section 8.6
Solving Logarithmic
& Exponential
Equations

Example 1:

Solve $log_3x = log_312$

Example 2:

Solve log(2x - 1) = logx

Example 3: Solve $\log_4(x^2 - 6) = \log_4 10$

Ex.1 $\ln x = -3$

2523x

$$e^{3} = x$$
 $x = .05$

Ex.3 $2\log_{5}(3x) = 4$
 $\log_{5}(3x) = 7$
 $\log_{5}(3x) = 7$

Ex.2 $\log x = -1$

Ex.5
$$\log_3(2x+1) \pm \log_3(2) = \log_3(5x)$$

 $\log_3(4x+2) = \log_3(5x)$
 $4x+2 = 5x$
 $2 = x$
Ex.6 $\log_6(3x+14) = \log_6(5) = \log_6(2x)$
 $\log_6(\frac{3x+14}{5}) = \log_6(5x)$
 $3x+14 = 2x$
 $3x+14 = 2x$

Ex.7
$$\log(5x) + \log(x - 1) = 2$$

 $\log(5x^2 - 6x) = 2$
 $\log(5x^2 - 6x) =$

 $\frac{100}{100} (x^2 + 1) = 1$

Example 10 - If you had \$2000 to invest in an account with an APR of 6% (compounded monthly), how many years would it take for the account to be worth \$5000?

\$500 in an account that pays 6.75% interest, compounded continuously. How long will it take (round the years to the nearest hundredths) for your money to double?